Simplified neutrosophic linguistic normalized weighted Bonferroni mean operator and its application to multi-criteria decision-making problems
نویسندگان
چکیده
The main purpose of this paper is to provide a method of multi-criteria decision-making that combines simplified neutrosophic linguistic sets and normalized Bonferroni mean operator to address the situations where the criterion values take the form of simplified neutrosophic linguistic numbers and the criterion weights are known. Firstly, the new operations and comparison method for simplified neutrosophic linguistic numbers are defined and some linguistic scale functions are employed. Subsequently, a Bonferroni mean operator and a normalized weighted Bonferroni mean operator of simplified neutrosophic linguistic numbers are developed, in which some desirable characteristics and special cases with respect to the parameters p and q in Bonferroni mean operator are studied. Then, based on the simplified neutrosophic linguistic normalized weighted Bonferroni mean operator, a multi-criteria decision-making approach is proposed. Finally, an illustrative example is given and a comparison analysis is conducted between the proposed approach and other existing method to demonstrate the effectiveness and feasibility of the developed approach.
منابع مشابه
Bonferroni Mean Operators of Linguistic Neutrosophic Numbers and Their Multiple Attribute Group Decision-Making Methods
Linguistic neutrosophic numbers (LNN) is presented by Fang and Ye in 2017, which can describe the truth, falsity, and indeterminacy linguistic information independently. In this paper, the LNN and the Bonferroni mean operator are merged together to propose a LNN normalized weighted Bonferroni mean (LNNNWBM) operator and a LNN normalized weighted geometric Bonferroni mean (LNNNWGBM) operator and...
متن کاملTriangular Intuitionistic Fuzzy Triple Bonferroni Harmonic Mean Operators and Application to Multi-attribute Group Decision Making
As an special intuitionistic fuzzy set defined on the real number set, triangular intuitionistic fuzzy number (TIFN) is a fundamental tool for quantifying an ill-known quantity. In order to model the decision maker's overall preference with mandatory requirements, it is necessary to develop some Bonferroni harmonic mean operators for TIFNs which can be used to effectively intergrate the informa...
متن کاملMULTI-ATTRIBUTE DECISION MAKING METHOD BASED ON BONFERRONI MEAN OPERATOR and possibility degree OF INTERVAL TYPE-2 TRAPEZOIDAL FUZZY SETS
This paper proposes a new approach based on Bonferroni mean operator and possibility degree to solve fuzzy multi-attribute decision making (FMADM) problems in which the attribute value takes the form of interval type-2 fuzzy numbers. We introduce the concepts of interval possibility mean value and present a new method for calculating the possibility degree of two interval trapezoidal type-2 fuz...
متن کاملArithmetic Aggregation Operators for Interval-valued Intuitionistic Linguistic Variables and Application to Multi-attribute Group Decision Making
The intuitionistic linguistic set (ILS) is an extension of linguisitc variable. To overcome the drawback of using single real number to represent membership degree and non-membership degree for ILS, the concept of interval-valued intuitionistic linguistic set (IVILS) is introduced through representing the membership degree and non-membership degree with intervals for ILS in this paper. The oper...
متن کاملCross-Entropy and Prioritized Aggregation Operator with Simplified Neutrosophic Sets and Their Application in Multi-Criteria Decision-Making Problems
Simplified neutrosophic sets (SNSs) can effectively solve the uncertainty problems, especially those involving the indeterminate and inconsistent information. Considering the advantages of SNSs, a new approach for multi-criteria decision-making (MCDM) problems is developed under the simplified neutrosophic environment. First, the prioritized weighted average operator and prioritized weighted ge...
متن کامل